USGS Groundwater Investigations in the San Diego area, CA

Wesley R. Danskin

Research Hydrologist
United States Geological Survey

What have we accomplished?

- Data collection
- Geology
- Geochemistry
- Hydraulics
- Modeling

IRWM, December 2014

Optimal Basin Management

Where we began, in 2001

Objective: Increase the local water supply

Initial data

Where did we start?

Торіс		Years behind					Year
		-50	-40	-30	-20	-10	2000
Geology	Surficial geologic mapping						
	Subsurface geology						
	Remote sensing						
	Geologic history						
	Geologic framework model						
ce ir	Surface-water gages						
Surface water	Reservoirs						
Su	Imported water						
	Well inventory						
ē	Water levels						
wat	Water budget						
ρι	Aquifer parameters						
Ground water	Groundwater flow model						
	SW/GW model						
	Optimal management model						
Water quality	Basic major ions						
	Minor constituents						
	Contaminants						
	Geochemical models						

Geology – Collect three-dimensional data, cuttings and cores

Multiple-depth well data — Understand the aquifer and manage pumpage

Geologic profiles of the San Diego area

Water-level data — Understand effects of pumpage, calibrate model

Water-quality data — Track the groundwater

Surface water – 49 sites
 Lake – 8 sites
 Spring – 1 site
 Ground water – 148 sites

Geochemistry – **Identify chemical groups to map groundwater flow**

Hydraulics – Conductivity correlates with geologic formation

Modeling – **Identifying where recharge and runoff occurs**

Subsurface flow to the coast is modest

Estimates of subsurface flow to the coast

- San Diego River area about 10,000 to 23,000 acre-feet per year
- San Diego region about 40,000 acre-feet per year

Estimates of subsurface flow to the coastal plain (millions of m ³ /γea	ır)
0	D: -

	San Diego	San Diego
Method	River basin	Region
Calibrate BCM regionally to multiple streamgages		
Develop reconstructed flow record for San Diego River for unimpaired flows		
Basin inputs (BCM recharge + runoff) minus outputs (streamflows) (1982-2009)	18.0	
Ratio of basin inputs to outputs = 40/60		
Extrapolated to 3 main river basins draining to coastal plain (1940-2009)	28.3	48.8
BCM partitioned into flow components in the San Diego River (1982-2009)	13.0	
MODFLOW model of San Diego River with BCM boundary conditions (1982-2009)	18.0 - 12.3	

Simulation models test concepts, aid in water management

Rainfall—runoff model
Regional hydrologic model (proposed)

Groundwater flow model of SD River basin

Coastal freshwater/saltwater model

Best available science, vetted and shared with others

- Learn from and advise local water experts
- USGS researchers
- Universities
- Consulting firms
- SD Assoc. Geologists
- International outreach

Simulating coastal groundwater flow

Limited recharge in the mountains

More freshwater off the coast?