CHAPTER 4 Water Quality Compliance (SWRP Guidelines Section V)

SWRP Checklist Guidelines

- ☑ Plan identifies activities that generate or contribute to the pollution of storm water or dry weather runoff, or that impair the effective beneficial use of storm water or dry weather runoff.
- Plan describes how it is consistent with and assists in, compliance with total maximum daily load implementation plans and applicable national pollutant discharge elimination system permits.
- Plan identifies applicable permits and describes how it meets all applicable waste discharge permit requirements.

This chapter discusses the compliance of the SWRP with other water quality regulations for the County of San Diego. Regulatory authorities exist on the federal, state, and regional levels for the protection of water quality in California. With regard to water quality management responsibilities, the USEPA is the federal agency pursuant to the Clean Water Act, and the SWRCB is the state agency pursuant to the Porter-Cologne Act. The SDRWQCB implements water quality regulations throughout the San Diego Region, including the County of San Diego areas.

Figure 4-1 provides a flow chart of California water quality legislation, the associated permits reflecting this legislation, and required plans for compliance with these permits. Background on these permits and plans is described in Section 4.1 of this chapter. Section 4.2 summarizes the different activities within San Diego County that generate or contribute to the pollution of storm water or dry weather runoff organized by WMA.

4.1 Applicable Permits and Plans

The purpose of the Clean Water Act is to protect and maintain the quality and integrity of the nation's waters by requiring states to develop and implement state water plans and policies. California implemented the Porter-Cologne Water Quality Control Act (California Water Code Section 13000 et seq.) in 1969. The Porter-Cologne Act established the SWRCB and divided California into nine regions, each overseen by a RWQCB, such as the SDRWQCB. The Clean Water Act and the Porter-Cologne Act established several permits and plans, including the Water Quality Control Plans (basin plans) and the NPDES, as discussed below.

California Water Quality Legislation

4.1.1 Basin Plans and Impaired Water Bodies

The nine RWQCBs within the state are responsible for adoption and implementation of basin plans, issuance of waste discharge requirements, and performing other functions concerning water quality control within their respective regions, subject to SWRCB review or approval (SDRWQCB, 2012). According to California Water Code Section 13050, basin plans establish the beneficial uses to be protected for the waters within a specified area, water quality objectives to protect those uses, and an implementation program for achieving the objectives. This SWRP incorporates the water quality objectives listed in the SDRWQCB Basin Plan.

Under Section 303(d) of the Clean Water Act, states, territories, and authorized tribes are required to develop lists of impaired waters. Impaired waters are waters that do not meet water quality standards identified in the basin plan for that region, even after point sources of pollution have installed the minimum required levels of pollution control technology. The law requires that these jurisdictions establish a priority ranking for listed waters and develop TMDL action plans to improve water quality. TMDLs are described in Section 4.1.2 below.

4.1.2 Total Maximum Daily Loads

The Clean Water Act Section 303(d) requires states to identify waters that do not meet certain water quality standards and develop TMDLs for them. Additionally, TMDLs are programs for implementation of existing water quality standards and are established in the Regional Basin Plan subject to the requirements of the California Water Code Section 13242.

A TMDL is a quantitative assessment of water quality problems, contributing sources, and load reductions or control actions needed to restore and protect bodies of water. The TMDL approach provides a framework for evaluating pollution control efforts and for coordination between federal, state, and local efforts to meet water quality standards. TMDLs are adopted as amendments to the region's basin plan (SDRWQCB, 2016a).

A TMDL project may consist of a single water body and pollutant or a combination of multiple water bodies and pollutant listings to restore impaired water bodies (SDRWQCB, 2016b). SDRWQCB works collaboratively with stakeholder groups to address its impaired water bodies and define TMDLs. The development steps include assessing the water body, defining total loads, developing allocations, and implementation plans to address the water quality impairment(s) (SDRWCB, 2016c).

Table 4-1 below lists the TMDLs that have been adopted within the San Diego Region, along with their adoption date.

Adopted TMDLs	Adoption Date
Chollas Creek Diazinon TMDL	August 14, 2002
Rainbow Creek Nitrogen and Phosphorus TMDLs	February 9, 2005
Shelter Island Yacht Basin Dissolved Copper TMDL	February 9, 2005
Chollas Creek Copper, Lead and Zinc TMDLs	June 13, 2007
Indicator Bacteria: Revised Project I – Twenty Beaches and Creeks in San Diego Region (including Tecolote Creek)	February 10, 2010
Indicator Bacteria: Project II – Baby Beach in Dana Point Harbor and Shelter Island Shoreline Park in San Diego Bay	June 11, 2008
Los Peñasquitos Lagoon Sediment TMDL	June 13, 2012
Adopted Alternative Approach TMDL	Adoption Date
Loma Alta Slough TMDL Phosphorus	June 26, 2014
SOURCE: SDRWQCB, 2016b	

TABLE 4-1 TMDLS ADOPTED BY SDRWQCB FOR THE SAN DIEGO REGION

There are many TMDL projects that are currently under development. Table 4-2 below lists the TMDLs that are in the process of being developed for the San Diego Region.

TABLE 4-2

TMDLS IN PROGRESS FOR THE SAN DIEGO REGION Proposed TMDLs San Diego Bay Marine Sediments TMDLs: Mouth of Chollas Creek • Seventh Street Channel (Paleta Creek) Switzer Creek B Street/Broadway Piers Downtown Anchorage Naval Station Submarine Base TMDLs for Impaired Lagoons, Adjacent Beaches, and Agua Hedionda Creek Tijuana River and Estuary Famosa Slough Santa Margarita River Estuary SOURCE: SDRWQCB, 2016c.

This SWRP incorporates the TMDLs for the San Diego Region.

4.1.3 National Pollutant Discharge Elimination System Permits

In 1972, the Clean Water Act was amended to state that discharge of pollutants to waters of the United States from any point source is unlawful unless the discharge is in compliance with a NPDES permit (SWRCB, 2013). General permits establish essential regulatory requirements for a broad range of activities. NPDES permits that apply to the San Diego Region include the Construction General Permit, the Industrial General Permit, and the MS4 Permit. These permits are described in more detail below.

4.1.3.1 Construction General Permit

Construction projects (or projects that are part of a larger development plan) that disturb one or more acres of ground surface must obtain coverage under the Construction General Permit (2009-0009-DWQ as amended by 2010-0014-DWQ and 2012-0006-DWQ). Compliance with the Construction General Permit requires the preparation and implementation of a project-specific Storm Water Pollution Prevention Plan (SWPPP). The SWPPP describes which BMPs will be implemented on site, where they will be located to prevent pollutants from contacting storm water, and how they will impede polluted runoff from moving off site into receiving waters. Categories of BMPs include erosion control, sediment control, waste management, good housekeeping, and post-construction. The SWPPP must also detail any pertinent monitoring and sampling requirements to be performed throughout the construction period, which are identified in the Construction General Permit and are dependent on the sediment and receiving water risk level of the site. Compliance with the Construction General Permit is implemented and enforced by SWRCB, which runs the Storm Water Multiple Application and Report Tracking System website, where storm water permit documents are electronically filed. SWRCB also processes all Notice of Intent documents prepared by projects intending to comply with the Construction General Permit (SDRWQCB, 2016d). Projects evaluated and prioritized by this SWRP disturbing more than an acre of ground surface would be required to comply with the Construction General Permit requirements.

4.1.3.2 Industrial General Permit

SWRCB adopted the most recent version of the Industrial General Permit in July 2015 (Order 2014-0057-DWQ). The purpose of this permit is to protect water quality during industrial operations. A SWPPP must be prepared that includes BMPs to be implemented throughout the site operation. BMPs must include all minimum BMPs identified in the Industrial General Permit that are required for all facilities, along with any applicable advanced BMPs. The SWPPP also requires monitoring. Minimum BMP types include good housekeeping, preventative maintenance, spill and leak prevention and response, material handling and waste management, erosion and sediment control, quality assurance, and record keeping. Operation of industrial facilities must comply with discharge prohibitions, effluent limitations, receiving water limitations, and TMDLs for receiving waters. Monitoring and receiving water sampling requirements for the facility must also be detailed in the SWPPP. The Industrial General Permit requires each facility to have a Pollution Prevention Team established and responsible for assisting with the implementation of the requirements in the Permit (SWRCB, 2014).

Projects evaluated and prioritized by this SWRP would be required to comply with the Industrial General Permit if they involve industrial operations as identified by the permit, although this is not expected for the types of projects that are typically used to address storm water.

4.1.3.3 San Diego Municipal Separate Storm Sewer System (MS4) Permit

The San Diego Region's MS4 Permit (Order No. R9-2013-001, as amended by Order Nos R9 2015-001 and R9 2015-011) is designed to regulate discharges from municipal separate storm sewer systems. The MS4 Permit covers 39 municipal, county government, and special district entities (referred to jointly as Copermittees) located in San Diego County, southern Orange County, and southwestern Riverside County who own and operate large MS4s, which discharge storm water (wet weather) runoff and non-storm water (dry weather) runoff to surface waters (SDRWQCB, 2015).

The MS4 Permit includes minimum BMPs required for commercial, industrial, municipal, and residential operations. The Permit also requires inspection of BMPs. Additionally, each development project must implement, where applicable and feasible, low impact development (LID) BMPs to mimic the natural hydrology of the site and retain and/or treat pollutants in storm water runoff prior to discharging to and from the MS4 (SDRWQCB, 2015). The San Diego Low Impact Development Design Manual details various LID BMPs and provides guidance on how to select them (CSD, 2011a).

The MS4 Permit requires the preparation of WQIPs for each WMA. The goal of the WQIPs is to guide the Copermittees' jurisdictional runoff management programs towards achieving the outcome of improved water quality in MS4 discharges and receiving waters. WQIPs must identify the highest priority water quality conditions and sources of pollutants or stressors. To identify the water quality priorities within each watershed addressed by their WQIP, the responsible agencies within each WMA considered various factors. These factors included but are not limited to: receiving waters listed as impaired on the Clean Water Act Section 303(d) List, TMDLs adopted and under development by the SDRWQCB, sensitive or highly valued receiving waters, and monitoring data. Following identification of highest priority water quality conditions, water quality improvement goals and strategies must be developed to address these conditions (SDRWQCB, 2015).

The MS4 Permit requires implementation of the Jurisdictional Runoff Management Programs (JRMPs) in accordance with the strategies identified in the WQIPs. The goal of JRMPs is to effectively prohibit non-storm water discharges to the MS4 and reduce the discharge of pollutants in storm water to the maximum extent possible (SDRWQCB, 2015). A list of entities within the San Diego Region that have developed JRMPs and the corresponding watersheds is provided in Table 4-3 below.

Jurisdiction	Watershed
City of Carlsbad	Carlsbad
City of Chula Vista	San Diego Bay
City of Coronado	San Diego Bay
City of Del Mar	San Dieguito River, Los Peñasquitos
City of El Cajon	San Diego River
City of Encinitas	Carlsbad
City of Escondido	Carlsbad, San Dieguito River
City of Imperial Beach	San Diego Bay, Tijuana River
City of La Mesa	San Diego Bay
City of Lemon Grove	San Diego Bay
City of National City	San Diego Bay
City of Oceanside	San Luis Rey River, Carlsbad
City of Poway	San Dieguito River; Los Peñasquitos
City of San Diego	San Dieguito River; Los Peñasquitos; Mission Bay; San Diego River; San Diego Bay; Tijuana River
City of San Marcos	Carlsbad
City of Santee	San Diego River
City of Solana Beach	Carlsbad; San Dieguito River
City of Vista	San Luis Rey River; Carlsbad
County of San Diego	All
San Diego County Regional Airport Authority	San Diego Bay
San Diego Unified Port District	San Diego Bay

TABLE 4-3 JRMPs within the San Diego Region

SOURCE: PCW, 2016

4.2 Pollutant-Generating Activities

Per MS4 Permit requirements, the WQIP prepared for each WMA within the San Diego Region identifies facilities, areas, and activities responsible for generating the highest priority water conditions within that WMA. The WQIPs also recognize and identify principal pollutant sources outside of the responsible agencies' jurisdictions that are sources for pollutants in the WMAs. These include:

- Other permitted discharges
- Other potential point sources¹
- Other nonpoint sources²

¹ Point sources are discrete conveyances, such as pipes or ditches.

² Nonpoint sources typically flow over land and discharge to receiving waters over a broad area, as opposed to a point location.

• Phase II MS4³ outfalls

Other permitted discharges include those permitted under the Industrial General Permit (Section 4.1.3.2) and Construction General Permit (Section 4.1.3.1). The following sections identify the highest priority water quality conditions and the pollutant-generating facilities, areas, and facilities for each of the nine WMAs in the San Diego Region. The information in each of these sections was adapted from each WMA's respective WQIP.

4.2.1 Santa Margarita River

Although the Santa Margarita River WMA WQIP is still in development, pollutant-generating activities for the WMA are available through other documents. Several of the water bodies in the WMA are impaired by eutrophication, nitrogen, and phosphorus, likely from nutrient applications from agriculture, nursery operations, municipal wastewater discharges, urban runoff, and septic systems. In addition to nutrient-related concerns, other water quality concerns within the watershed include excessive sedimentation, groundwater degradation and contamination, habitat loss, channelization, flooding, and scour (erosion).

4.2.2 San Luis Rey River

The San Luis Rey River WMA WQIP (LWA, 2016a) identified bacteria as the highest priority water quality condition for storm water or dry weather runoff for the San Luis Rey River watershed. Other general potential pollutant sources for the San Luis Rey River watershed include 1) parks, recreational, and open space areas, 2) landfills and other treatment facilities for municipal waste, and 3) tribal lands, federal lands, state parks, and lands regulated by State Board Phase II permits. It should be noted that there is very limited data available to identify potential pollutants in the watershed due to the monitoring locations. These monitoring locations do not represent a single land use type and thus, cannot be used to distinguish pollutant sources (LWA, 2016a).

The number of potential pollutant-generating facilities, areas, and activities within each jurisdiction of the San Luis Rey River watershed is shown in Table 4-4 below.

³ Phase II MS4s are smaller agencies (relative to municipalities) or areas that are regulated under the State's Phase II MS4 General Permit (State Board Order No. 2013-0001-DWQ) (SDRWQCB, 2013). They are outside the authority of the responsible agencies and, within the San Diego region can include, but are not limited to, correctional, transit, educational, and federal facilities. Phase II MS4 permittees are responsible only for the runoff from their facilities and activities, whereas the responsible agencies are responsible for receiving runoff from other sources.

Land Use	City of Vista	City of Oceanside	County of San Diego
Commercial Sites	537	1,085	340
Industrial Sites	181	59	8
Construction Sites	29	0	1,406
Parks/Recreation	1,250 acres	20 parks, 3 marinas	9 parks
Landfill Site	None	1 inactive site	2 inactive sites

 TABLE 4-4

 POTENTIAL POLLUTANT-GENERATING FACILITIES IN WATERSHED

SOURCE: LWA, 2016a (Table 2-16)

4.2.2.1 Bacteria

Bacteria are a primary source of pollutants in the storm drain system of the San Luis Rey River watershed. Potential pollutant sources for bacteria are listed in Table 4-5 below.

General Source Categories	Targeted Source Categories					
Construction	Food Establishments					
Commercial	Commercial Animal Facilities					
Industrial	Nurseries					
Municipal Parks and Recreation Areas	Residential Land Uses					
 Municipal Burn Sites and Landfills 	Agricultural Land Uses					
Residential	 Human Sources (sewer infrastructure, on-site wastewater treatment systems, homeless encampments) 					

 TABLE 4-5

 POTENTIAL POLLUTANT BACTERIA SOURCES

SOURCE: LWA, 2016a (Table 2-18)

The highest rated potential sources of human-related bacteria for dry and wet weather include: sanitary sewer overflows, leaking sewer pipes, homeless populations, and leaking septic systems. Sanitary sewer overflows typically occur during dry weather and are usually episodic events. During these events, leaking sewer pipes and aging infrastructure can allow water to flow outside of the intended conveyance and increase potential for cross-contamination if located near storm drains or receiving waters. Similarly, failing septic systems typically contribute to bacteria loads to the MS4 and receiving waters, and can occur during dry weather.

4.2.3 Carlsbad

The Carlsbad WMA WQIP (MOE, 2016) identified pesticides, bacteria, sedimentation, riparian habitat degradation, and hydromodification impacts as the highest priority conditions for storm water and dry weather runoff in the Carlsbad WMA. Specifically, riparian habitat degradation is the highest priority water quality condition for the Agua Hedionda and Escondido hydrologic area. The six HAs in the Carlsbad WMA have distinct pollutant sources. Table 4-6 below shows the number of pollutant-generating facilities and sites within each HA.

Pollutant Generating Sources	Loma Alta HA	Buena Vista Creek HA	Encinas HA	San Marcos HA
Aggregates/Mining	0	1	0	1
Agriculture	0	1	4	0
Animal Facilities	10	5	5	45
Auto Repair, Fueling, or Cleaning	92	131	67	136
Auto Parking Lots or Storage	6	16	27	4
Auto Body Repair or Painting	28	19	12	48
Nurseries/Greenhouses	4	28	59	96
Building Materials Retail	2	0	2	30
Chemical and Allied Products	4	0	4	4
Concrete Manufacturing	6	1	0	4
Eating or Drinking Establishments	123	391	162	501
Equipment Repair or Fueling	14	8	40	87
Fabricated Metal	17	6	42	39
Food Manufacturing	8	3	21	30
General Contractors	54	26	51	129
General Industrial	62	10	98	76
General Retail	125	94	58	65
Health Services	0	2	0	1
Institutional	6	2	0	0
Mobile Landscaping	0	0	0	0
Motor Freight	12	3	10	23
Offices	70	36	0	2
Parks and Rec (including Golf, Cemetery)	1	3	4	9
Pest Control Services	6	1	4	1
Pool and Fountain Cleaning	2	1	0	5
Publicly owned treatment works	0	0	1	3
Primary Metal	8	0	5	1
Recycling & Junk Yards	0	2	6	4
Roads, Streets & Parking, Freeways, Railways	0	0	0	1
Stone/Glass Manufacturing	8	3	10	10
Storage/Warehousing	14	9	48	108
Municipal	34	81	69	119
Residential (acres)	2,025	7,345	6,613	12,977

 TABLE 4-6

 MS4 POLLUTANT GENERATING SOURCES PER HA^a

a. The quantities in this table represent current data at the time of the WQIP's publication. These quantities are subject to change given the high turnover of facilities in the hydrologic area.

SOURCE: MOE, 2016 (Tables 23, 28, 35 and 39)

4.2.4 San Dieguito River

The San Dieguito River WMA WQIP (AMEC, 2015a) identified bacteria as the highest priority condition for storm water and dry weather runoff in the San Dieguito River WMA. According to the WQIP, the highest priority MS4 sources potentially contributing bacteria are residential areas and sanitary sewer overflows/septic systems. The likely sources for causing bacteria impairments are shown in Table 4-7 below. Sources of bacteria according to land uses are summarized in Table 4-8.

Source	Land Use Category	Number of Identified Likely Sources
Agriculture	Other	2 facilities
Animal Facilities	Commercial	49 facilities
Eating or Drinking Establishments	Commercial	420 facilities
Mobile Landscaping	Commercial	3 facilities
Nurseries and Greenhouses	Commercial	34 facilities
Roads, Streets and Parking	Municipal	2 facilities
Residential Areas	Residential	38,988 acres

TABLE 4-7 LIKELY SOURCES OF BACTERIA IN SAN DIEGUITO RIVER WMA^a

a. The quantities in this table represent current data at the time of the WQIP's publication. These quantities are subject to change given the high turnover of facilities in the water management area.

SOURCE: AMEC, 2015a (Table 3-1)

Other potential sources have been identified that may contribute to the bacteria impairment within the San Dieguito River WMA but are outside of the jurisdiction of the Responsible Parties. These sources are transferred to receiving waters by the Responsible Agencies' MS4s, and include: Phase II MS4 outfalls (Del Mar Fairgrounds and North County Transit District), other permitted discharges, other potential point sources, and other nonpoint sources.

		Land Uses							
Known or Suspected Source	Construction	Commercial	Industrial	Municipal	Residential	Parks and Recreational Areas	Open Space	Landfills	Other
By Facility									
Nurseries and Greenhouses		1		~		1			1
Eating and Drinking Establishments		1		1		1			1
Animal Facilities		1		1					~
By Area									
Agriculture				~	1				1
Roads, Streets, Parking Areas		1	1	1		1			1
Residential Areas					1				1
By Activity									
Mobile Landscaping		1		1	1	1			
Other									
Bacteria Regrowth and Biofilms				~					1
Transient Encampments									1
Sanitary Sewer Overflows and Septic Systems	1	1	1	1	1	1			1
Wildlife				1		1	1	1	1

 TABLE 4-8

 Sources of Bacteria in the San Dieguito River WMA

SOURCE: AMEC, 2015a (Table 3-3)

4.2.5 Los Peñasquitos

The Los Peñasquitos WMA WQIP (AMEC, 2015b) identified freshwater discharge, hydromodification, sediment, and bacteria as the highest priority conditions for storm water and dry weather runoff in the Los Peñasquitos WMA.

4.2.5.1 Freshwater

Freshwater discharge has a more significant impact during dry weather than wet weather since historically the creeks in the Los Peñasquitos WMA did not run at all during dry weather. Table 4-9 summarizes the sources of freshwater discharge in the Los Peñasquitos WMA.

		Land Uses							
Known or Suspected Source	Construction	Commercial	Industrial	Municipal	Residential	Parks and Recreational Areas	Open Space	Landfills	Other
Outfalls with Persistent Dry Weather Flow		1	1	1	1				1
Irrigation Runoff				1		1			
Parks and Recreation (including golf courses and cemeteries)				\$		1			1
Roads, Streets, Highways, and Parking		\$		~	1				1
Residential Areas									
Sanitary Sewer Overflow	<i>s</i>	1	1	~	1	\$			1

 TABLE 4-9
 Sources of Freshwater Discharge in the Los Peñasquitos WMA

SOURCE: AMEC, 2015b (Table 3-3)

4.2.5.2 Hydromodification

The sediment TMDL states that hydromodification has a more significant impact during wet weather than dry weather. With the increase of impervious surfaces in the watershed, less storm water can infiltrate into the ground, and more is instead directed to natural waterways or the MS4s. This means that the peak (and total) flow in the creeks is greater and occurs more rapidly than under undeveloped conditions (with fewer impervious surfaces). Table 4-10 summarizes the sources of hydromodification in the Los Peñasquitos WMA.

 TABLE 4-10
 Sources of Hydromodification in the Los Peñasquitos WMA

		Land Uses							
Known or Suspected Source	Construction	Commercial	Industrial	Municipal	Residential	Parks and Recreational Areas	Open Space	Landfills	Other
Land Development	1	1	1	~	>				>
Impervious Surfaces	1	1	1	1	1				~
Outfalls Discharging to Canyons/Bluffs		1	1	1	1				1
Open Space Areas							1		1
Flood Control Basins				1					
Channel Drop Structures				1					

SOURCE:AMEC, 2015b (Table 3-3)

4.2.5.3 Sediment

The sediment TMDL states that sources of sediment are more significant in wet weather than in dry weather. Hydromodification can cause significant erosion in the natural drainages and canyon walls, as well as within creek beds, banks, and floodways, as the geomorphology shifts to transport the larger flow. The higher peak flows possess greater energy, which can mobilize greater amounts and sizes of sediment. Table 4-11 summarizes the sources of sediment in the Los Peñasquitos WMA.

	Land Uses								
Known or Suspected Source	Construction	Commercial	Industrial	Municipal	Residential	Parks and Recreational Areas	Open Space	Landfills	Other
By Facility							•		
Aggregates/Mining			1						1
Animal Facilities		1		1					1
Building Materials Retail		1				1			
Nurseries and Greenhouses		1	1	1					1
Health Services		1		1					
Recycling and Junk Yards			1	1				1	
Stone/Glass Manufacturing			1						
Storage/Warehousing	1	1	1	1					1
By Area									
Agriculture				1	1				1
Auto Parking Lots or Storage	1	1		1	1	1			1
General Retail		1							
Municipal	1			1	1	1	1	1	
Residential Areas					1				
By Activity									
Concrete Manufacturing	1		1						
Construction	1								
General Contractors	1								
Mobile Landscaping		1		1	1				
Other									
Hydromodification	1	1	1	1	1	1			1
Ocean Sediment Contribution						1			1
Open Space Areas							1		
Roads, Streets, Highways, and Parking		1		1	1				1

TABLE 4-11 SOURCES OF SEDIMENT IN THE LOS PEÑASQUITOS WMA

SOURCE: AMEC, 2015b (Table 3-3)

4.2.5.4 Bacteria

The bacteria TMDL states that sources of bacteria may be the same in wet and dry weather, however, the transport mechanisms are different. During storm events, bacteria are discharged to the MS4 over a general area, which receives rainfall and which can be well represented by land use. During dry weather, bacteria are conveyed by illicit discharges, irrigation runoff, infiltration, and permitted discharges. Table 4-12 provides the sources of bacteria in the Los Peñasquitos WMA.

		Land Uses							
Known or Suspected Source	Construction	Commercial	Industrial	Municipal	Residential	Parks and Recreational Areas	Open Space	Landfills	Other
By Facility									
Animal Facilities		1		1					1
Eating and Drinking Establishments		~		1		~			1
Nurseries and Greenhouses		1	1	1		1			1
By Area									
Residential Areas									
Agriculture									
By Activity									
Mobile Landscaping									
Other									
Bacteria Regrowth and Biofilms				1					1
Transient Encampments									1
Open Space Areas							1		
Sanitary Sewer Overflows	1	1	1	1	1	1			1
Wildlife				1		1	1	1	1

TABLE 4-12
SOURCES OF BACTERIA IN THE LOS PEÑASQUITOS WMA

SOURCE: AMEC, 2015b (Table 3-3)

4.2.5.5 Other Sources

Other potential sources have been identified that may contribute to the impairment within the Los Peñasquitos WMA, including Phase II MS4 outfalls (Marine Corps Air Station Miramar, North County Transit District (NCTD), and the University of California, San Diego), other permitted discharges (Table 4-13), other potential point sources, and other nonpoint sources.

Permit Type	Number of Permits in WMA
Municipal Storm Water	5
Industrial Storm Water	75
Construction Storm Water	46
Caltrans Storm Water	1
Other Individual NPDES Discharges	0
Total	127
SOURCE: AMEC, 2015b (Table 3-2)	

 TABLE 4-13

 STORM WATER DISCHARGE PERMITS

4.2.6 Mission Bay

The Mission Bay WMA WQIP (AMEC, 2016) identified bacteria and sediment as the highest priority pollutants in its WMA. Table 4-14 lists the likely sources of bacteria and sediment within the Mission Bay WMA.

Source Type	Category	Total Number of Sources in WMA	Bacteria	Sediment
Agriculture	Other	2 (80 acres)	-	✓
Animal Facilities	Commercial	77	1	-
Construction	Construction	N/A	-	1
Eating/Drinking Establishments	Commercial	1,281	1	-
Golf Courses/Parks	Municipal	14	1	1
Home and Garden Care	Residential	11,463 acres	1	1
Hydromodification	Construction	N/A	-	1
Landscaping	Commercial	32	1	1
Land Use Alteration	Construction	N/A	-	1
Mobile eating/Drinking Establishments	Commercial	2	1	-
Mobile Landscaping	Commercial	205	1	1
Nurseries/Greenhouses	Commercial	7	-	✓
Publicly Owned Treatment Works (POTWs)	Municipal	1	1	-
Waste Disposal	Municipal	3	1	-

TABLE 4-14 LIKELY SOURCES OF BACTERIA AND SEDIMENT

Sources are quantified by facility counts or acreage. Facility counts help define the sources during dry weather and land uses help defines sources during wet weather.

N/A = not available. The number of sources is either variable, as with construction, or is not currently assessed by the jurisdiction because of the difficulty in obtaining an accurate count.

"✓" = Source applies to highest priority water quality condition. "-" = Source does not apply to highest priority water quality condition.

SOURCE: AMEC, 2016 (Table 3-1)

Other potential sources have been identified that may contribute to the impairment within the Mission Bay WMA, including Phase II MS4 outfalls (Marine Corps Air Station Miramar, NCTD, Veterans Administration San Diego Healthcare System, and the University of California, San Diego), other permitted discharges (Table 4-15), other potential point sources, and other nonpoint sources

Permit Type	Numbers of Permits ^a
Municipal Storm Water	2
Industrial Storm Water	6 ^b
Construction Storm Water	15 ^b
Caltrans Storm Water	1
Other Individual NPDES Discharges	4
Total	28

TABLE 4-15		
STORM WATER DISCHARGE PERMITS		

a. Number of permits in Tecolote and Scripps subwatersheds only.
b. Number of individual permittees filing under statewide general permit.

SOURCE: AMEC, 2016 (Table 3-2)

During wet weather, storm water runoff may carry bacteria and sediment from agricultural lands to the MS4. The bacteria TMDL identifies wildlife areas, which include open space land uses and are sometimes not under the jurisdiction of Responsible Agencies, as sources of bacteria. The wildlife areas partially account for bacteria contributions from wild animals and decaying plant sources.

During dry weather, bacteria may enter the MS4 or receiving waters through groundwater infiltration or irrigation runoff into municipal drainage channels. Also, groundwater may contribute to the bacteria in the MS4 and receiving waters. The Tecolote Creek Comprehensive Load Reduction Plan (City of San Diego and Caltrans) identifies aerial deposition (i.e., sediment blown and redeposited by wind) as both a natural source and a source influenced by human activity for sediment in the San Diego Region.

4.2.7 San Diego River

The San Diego River WMA WQIP (LWA, 2016b) identified bacteria as the highest priority water quality condition. Table 4-16 provides a summary of the applicable pollutant generating facilities, areas, and activities within each participating agency's boundaries.

TABLE 4-16
SUMMARY OF APPLICABLE POLLUTANT GENERATING FACILITIES, AREAS, AND/OR ACTIVITIES BY JURISDICTION

Potential Pollutant Source Areas	County of San Diego	City of San Diego	City of Santee	City of La Mesa	City of El Cajon
Construction, Commercial, Industrial, Municipal, Residential Facilities and/or Areas	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Publicly Owned Parks and/or Recreational Areas	✓	~	✓		✓
Open Space Areas	✓	✓	\checkmark		✓
Municipal Landfills or Other Treatment, Storage, or Disposal Facilities for Municipal Waste	\checkmark	\checkmark			
Areas Not within the Copermittee's Jurisdiction	✓	~			
SOURCE: LWA, 2016b (Table 2-17)					

Table 4-17 presents a summary of the number of pollutant generating land uses in the San Diego River WMA.

Land Use	County of San Diego	City of San Diego	City of Santee	City of La Mesa	City of El Cajon
Construction Sites	288	247	14	28	12
Commercial Sites	493	3,703	540	342	700
Industrial Sites	79		n/a	17	104
Municipal Sites	40	57	17	49	34
Parks/Recreation Areas (in sites or acres)	25 sites	67 sites	279 acres		78 acres

TABLE 4-17 POLLUTANT GENERATING LAND USES

SOURCE: LWA, 2016b (Table 3-17)

Some additional sources of pollution identified in the San Diego River WQIP that are naturally present include wildlife, kelp, natural erosion, bacterial regrowth, natural groundwater, and wildfires. Natural sources that can be anthropogenically influenced include groundwater altered by imported water supply, aerial deposition of transportation and industrial pollutants, and erosion exacerbated by hydromodification. Sources specific to bacteria were identified within the watershed including homeless populations living near receiving waters, sludge/sewage disposal sites, and portable bathroom facilities.

4.2.8 San Diego Bay

The San Diego Bay WMA WQIP (SDBRP, 2016) identified indicator bacteria, metals, and trash as the highest priority water quality conditions. Table 4-18 summarizes the facilities and activities identified as known or suspected sources of pollutants and stressors identified for the highest priority conditions for the San Diego Bay WMA.

Source Type	Total Number of Facilities in Hydrologic Areaª	Bacteria	Metals
Agriculture	1	\checkmark	\checkmark
Animal Facilities	82	\checkmark	
Automotive	876		\checkmark
Eating or Drinking Establishments	2,316	\checkmark	
Equipment	91		\checkmark
General Industrial	95		\checkmark
Institutional	68		\checkmark
Manufacturing	57		\checkmark
Metal	40		\checkmark
Nurseries/Greenhouses	18	\checkmark	\checkmark
Stone/Glass Manufacturing	9		\checkmark
Storage/Warehousing	210		\checkmark
Municipal	298		\checkmark
Residential Areas ^b	10,716	✓	✓

TABLE 4-18 LIKELY SOURCES OF POLLUTANTS AND STRESSORS

✓ = Stressor has been identified for the Highest Priority Condition in the hydrological area.

Blank = Stressor is not identified as a potential source in the WURMP Annual Reports.

a. Total number of facilities in San Diego Mesa HA. Many of these facilities do not drain to the Chollas Creek

HSA. b. Residential areas are reported as acreage and not by the number of dwellings.

SOURCE: SDBRP, 2016 (Table 3-3)

Other potential sources have been identified that may contribute to the impairment within the San Diego Bay WMA, including Phase II MS4 outfalls (Metropolitan Correctional Center San Diego and R.J. Donovan Correctional Facility), other permitted discharges, other potential point sources, and other nonpoint sources. Table 4-19 lists discharge permits within the Pueblo HA of the San Diego Bay WMA. The Pueblo San Diego Watershed contains the most concentrated area of urban land uses and MS4 outlets and outfalls and has the highest priority water quality conditions for bacteria and metals.

The highest relative load contributions of dissolved copper, lead, and zinc have been attributed to freeways and commercial/industrial land uses, which may include both point and nonpoint sources. Brake pad wear on automobiles is a likely nonpoint source of copper, and, to a lesser extent, a source of lead and zinc in the creek. Discharge of drinking water supply has also been identified as a point source of metals, and may partially be contributed to by piping infrastructure. Sediment and groundwater flows have also been identified as nonpoint sources of these metals into the creeks.

Permit Type	Number of Permits in the Pueblo Hydrologic Area
Municipal Storm Water	1
Industrial Storm Water	93
Construction Storm Water	89
Caltrans Storm Water	1
Other Discharge Permits ^a	5
Total	189

TABLE 4-19
DISCHARGE PERMITS

 a. Includes Order No. R9-2010-0003, R9-2011-0022, 2011-0002-DWQ, 2011-0003-DWQ, and 2011-0004-DWQ. Dischargers may apply for such permits, as necessary.

SOURCE: SDBRP, 2016 (Table 3-2)

4.2.9 Tijuana River

The WQIP for the Tijuana River WMA (URS, 2016) identified sedimentation and siltation in the Tijuana River and turbidity in the Tijuana River and Tijuana River Estuary as the highest priority water quality conditions in the WMA. Segments of both the Tijuana River and the Tijuana River Estuary are identified on the 303(d) list as impaired by sedimentation/siltation or the associated constituent solids, total suspended solids (TSS), and turbidity.

Sediment and turbidity were determined to originate from a range of sources including regulated and unregulated; point and nonpoint; and natural and anthropogenic sources. Anthropogenic sources of sediment occur when storm water runoff rates exceed natural levels in urbanized areas, causing increased stream bank erosion. Other priority water quality conditions that were not selected to be addressed in the Tijuana River WQIP (indicator bacteria, low dissolved oxygen, nutrients, surfactants, TDS, trash, pesticides, synthetic organics, and toxicity) are being addressed by the JRMP. In addition, by addressing sediment, these pollutants often associated with sediment load, will be addressed concurrently.

Table 4-20 lists the inventory of potential pollutant-generating facilities within the Tijuana Valley hydrologic area that may cause or contribute to sedimentation/siltation and turbidity water quality condition in Tijuana River and Tijuana River Estuary in the Lower Watershed. Table 4-21 shows a similar inventory for land uses in the Tijuana Valley hydrologic area.

Facility Type	Total
Construction Sites	136
Commercial Facilities	1,444
Industrial Facilities	99
Municipal Facilities	38
Treatment, Storage or Disposal Facilities	20
SOURCE: URS, 2016 (Table 2-12)	

TABLE 4-20 POTENTIAL POLLUTANT-GENERATING FACILITIES THAT MAY CONTRIBUTE TO THE HIGHEST PRIORITY WATER QUALITY CONDITION

TABLE 4-21 POTENTIAL POLLUTANT-GENERATING AREAS THAT MAY CONTRIBUTE TO THE HIGHEST PRIORITY WATER QUALITY CONDITION

Агеа Туре	Total		
Areas where the RAs have Oversight and Discharge Responsibility			
Commercial	321		
Institutional	139		
Low Density Residential	1,373		
High Density Residential	577		
Transportation ^a	2,291		
Vacant and Undeveloped Land	3,403		
Open Space Park or Preserve	3,892		
Other Park, Open Space and Recreation	126		
Areas where the RAs have Oversight Responsib	ility Only		
Industrial	1,053		
Areas where the RAs do not have Oversight or I	Discharge Responsibility		
Federal Lands ^b	3,162		
Caltrans	1,057		
Other State Lands ^c	952		
School Land	368		
Agricultural	1,109		

a. Includes local streets and parking lots. Excludes Caltrans.

 b. Includes BLM, USFWS, military, and other federal lands
 c. Includes California Department of Fish and Game, State Parks, and other state lands.

SOURCE: URS, 2016 (Table 2-13)

Other potential sources have been identified that may contribute to the impairment within the Tijuana River WMA, including other permitted discharges (Table 4-22), other potential point sources, and other nonpoint sources.

TABLE 4-22	
NPDES PERMITTED DISCHARGES THAT MAY CONTRIBUTE TO	o
HIGHEST PRIORITY WATER QUALITY CONDITION	

Permit Type	Number of Permits in Tijuana River WMA
Industrial	47
Construction	19
Individual permits	2
Includes NPDES permits that may be relevant to sediment: Individual NPDES permit for discharges from Naval Base Coronado, specifically, Naval Outlying Field (NOLF) and discharges from Caltrans sites.	

Includes permittees in the Lower Watershed only.

SOURCE: URS, 2016 (Table 2-14)

Potential nonpoint source discharges in the Tijuana River WMA include agricultural operations, erosion related to unimproved roadways in rural areas, homeless encampments, and natural sources.

The Tijuana River main stem and tributary drainages of Yogurt Canyon, Goat Canyon, and Smuggler's Gulch transport anthropogenic-derived sediment and other pollutants generated in Mexico to receiving waters. Both point and nonpoint sources of pollutants are present in the Mexican portion of the watershed.