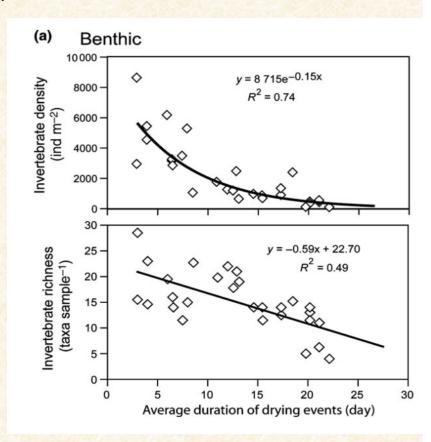
Numeric Flow Metrics to Support Freshwater Bio-objectives, Hydromodification Management, and Nutrient Numeric Endpoints (aka Flow Ecology)

IRWM Regional Advisory Committee Meeting
August 5th, 2015

Agenda for Today

Overview of Flow-ecology project

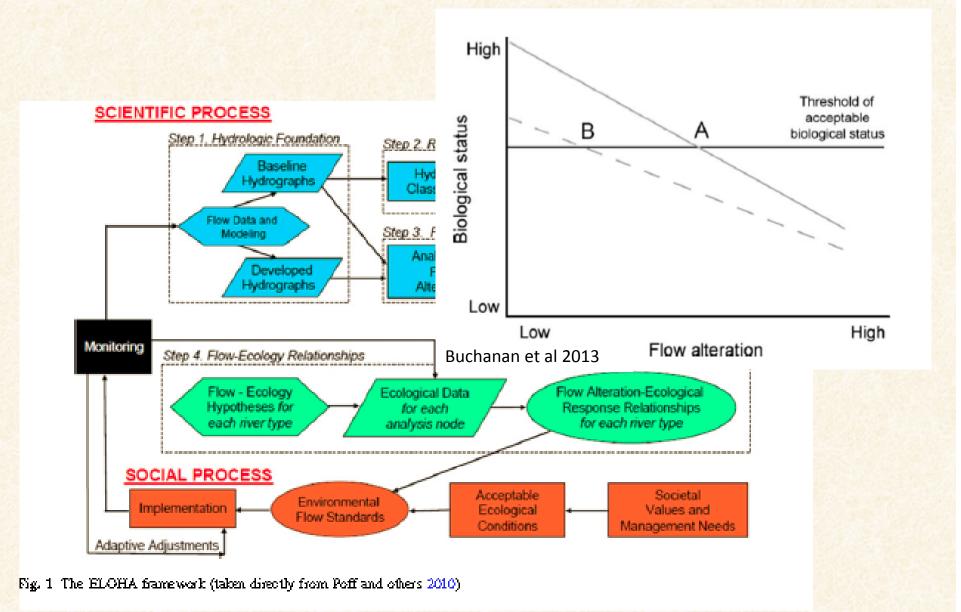

Goals of the Watershed Demonstration

Partnership opportunities and potential interactions

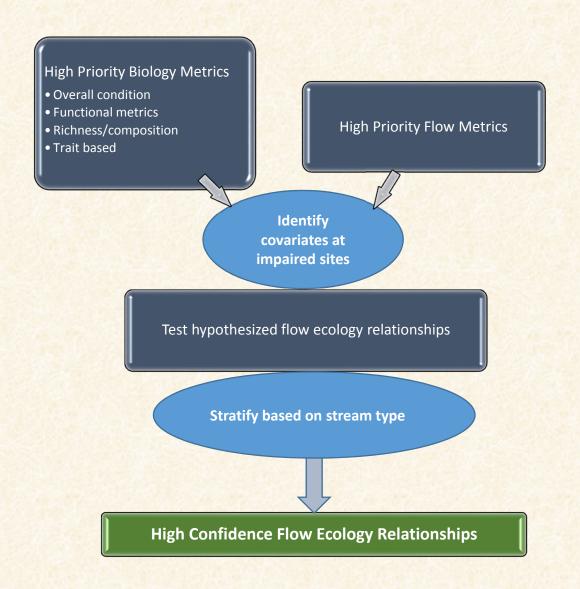
Next steps

Rationale for the Project

- Biological endpoints are increasingly used for ambient and compliance monitoring in streams
- Instream biological communities are sensitive to changes in flow and physical structure of streams
- Improved understanding of the relationship between flow and biological assessment indicators will aid in development of monitoring targets and causal assessment



Project Objectives


Develop an approach for establishing instream environmental flow requirements necessary to meet ecological benchmarks

- 1. How should streams in California be grouped or classified for the purposes of establishing environmental flow requirements?
- 2. What are the key hydrologic variables that should be used for environmental flow targets?
- 3. What are the key biological response variables that should be used when establishing environmental flow targets?
- 4. What is the appropriate framework/approach for setting actual flow targets for specific stream types?

ELOHA Framework

Conceptual Approach

- 1. Classify streams based on natural hydroclimatic and physical characteristics
- 2. Evaluate candidate flow metrics based on ability to discern reference from nonreference
- 3. Relate streamflow metrics to changes in land use and other stressors
- 4. Collect supplemental biological data where long-term flow data exists
- 5. Develop models for predicting key flow metrics
- 6. Produce a tool for assigning models/parameters to "novel" sites of interest
- 7. Analyze relationship between changes in flow metrics and biological response
- 8. Evaluate performance of various scoring tools at predicting flow-ecology relationships
- 9. Develop framework for determining flow targets based on biological endpoints
- 10. Demonstrate application of flow-ecology (ELOHA) framework to develop flow criteria in a pilot watershed(s)

- 1. Classify streams based on natural hydroclimatic and physical characteristics
- 2. Evaluate candidate flow metrics based on ability to discern reference from nonreference
- 3. Relate streamflow metrics to changes in land use and other stressors
- 4. Collect supplemental biological data where long-term flow data exists
- 5. Develop models for predicting key flow metrics
- 6. Produce a tool for assigning models/parameters to "novel" sites of interest

- 1. Classify streams based on natural hydroclimatic and physical characteristics
- 2. Evaluate candidate flow metrics based on ability to discern reference from nonreference
- 3. Relate streamflow metrics to changes in land use and other stressors
- 4. Collect supplemental biological data where long-term flow data exists
- 5. Develop models for predicting key flow metrics
- 6. Produce a tool for assigning models/parameters to "novel" sites of interest
- 7. Analyze relationship between changes in flow metrics and biological response
- 8. Evaluate performance of various scoring tools at predicting flow-ecology relationships
- 9. Develop framework for determining flow targets based on biological endpoints

- 1. Classify streams based on natural hydroclimatic and physical characteristics
- 2. Evaluate candidate flow metrics based on ability to discern reference from nonreference
- 3. Relate streamflow metrics to changes in land use and other stressors
- 4. Collect supplemental biological data where long-term flow data exists
- 5. Develop models for predicting key flow metrics
- 6. Produce a tool for assigning models/parameters to "novel" sites of interest
- 7. Analyze relationship between changes in flow metrics and biological response
- 8. Evaluate performance of various scoring tools at predicting flow-ecology relationships
- 9. Develop framework for determining flow targets based on biological endpoints
- 10. Demonstrate application of flow-ecology (ELOHA) framework to develop flow criteria in a pilot watershed(s)

Flow-Ecology Approach

* Develop and test "hypotheses" about flow-ecology relationships

- Identify hydrologic metrics of interest
 - □ Affect BMI metrics
 - □ Respond to human activity
 - Manageable
 - ☐ Can be modeled at ungaged sites
- Identify biological metrics of interest
 - □ CSCI and major components
 - ☐ Traits with plausible response to altered hydrology
- ❖ Develop relationships between ∆hydrology ~∆biology

Classes of Flow Metrics

Approximately 200 candidate flow metrics – All derived from daily flow data

**	M	agr	nit	ud	e
•		46	116	uu	

- □ streamflow (mean, max)
- median annual number of high flow events

Variability

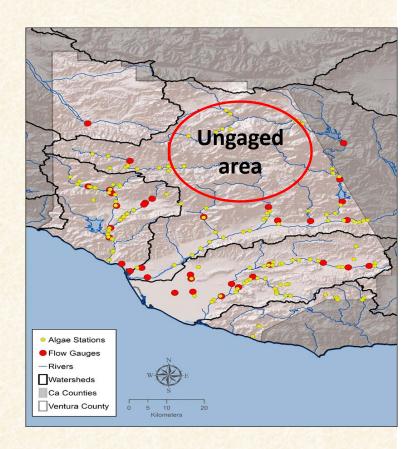
- median percent daily change in streamflow
- ☐ Interannual variability (min, max, median)

Duration

- □ Storm flow recession
- Base flow recession
- □ Duration above baseflow
- □ Duration of zero flow days

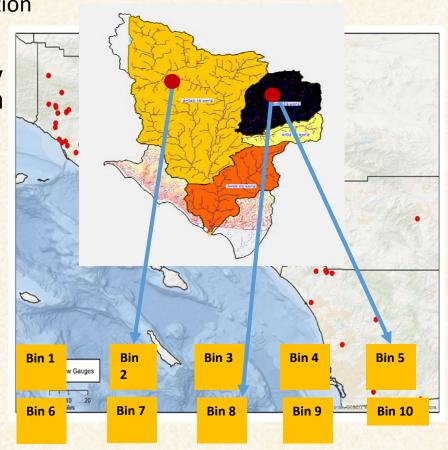
Isolate effects relative to other stressors

- Physical habitat
- Chemistry (SC as a surrogate)

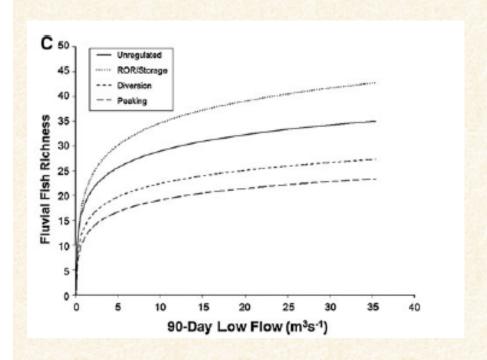

❖ Timing

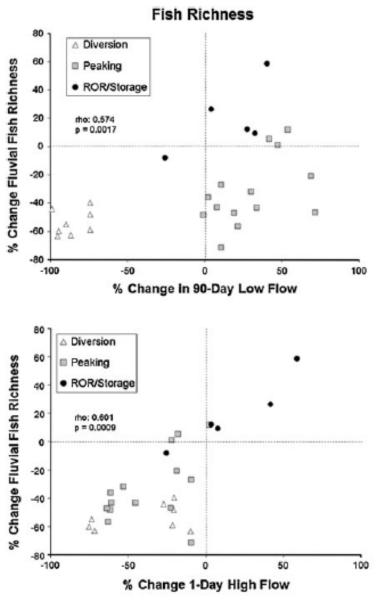
- month of minimum mean monthly streamflow
- ☐ Frequency of high flow events

Modeling Ungaged Streams

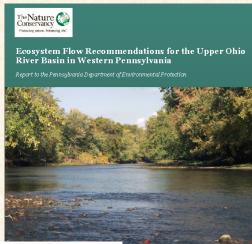

Need to estimate current and reference flow at ANY bioassessment site

- Few streams have long term flow gages
- Models can be used to generate flow data for ungaged systems
- Need to create set of ensemble models that capture the range of watershed types in the region
- Adjust parameters to simulate "reference conditions"




Model Extrapolation

- Calibrate 43 hydrological models at gaged subbasins
 - ☐ Optimize for flashiness and % low flow prediction
- Use classification analysis to identify key characteristics for assigning a model to a "novel" site
 - Watershed area
 - ☐ Soil permeability
 - ☐ Precipitation (summer and annual)
 - ☐ % sedimentary geology
 - Elevation range
- Predict flow and flow metrics for the ungaged site using the selected models


Relate Hydrologic Change to Biological Response

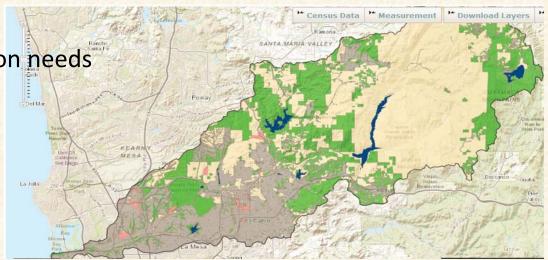
McManamay et al 2013

Operational Results

Flow Need - and applicable habitat type(s)		Flow Component and Season (Month)						¥						
1 10 m Heed - DIVD opphicode wooltdi type (3)	Summer		Fall			Winter		-	Sprii		18			
	1	j	Α	5	0	N	ם	J	F	M	Α	M		
Visints in heterogeneity of and connect ivity among habitats for resident and migratory fishes – All types														
upport mussel spawning, glochidia transfer, juvenile colonization and rowth – All types except head waters														
Promote/support development and growth of reptiles and amphibiars — All habitat types														
Promote macroinvertebrate growth and insect emergence — All types exceptiongs rivers														
We inte in fell sel monid spewning he bitet and promote egg, lerval, and juvenile development (brook and brown trout) – All cool-cold water types														
Maintain temperature and waterquality – AY types													Se	gh flo ason w flo
Transport organic matter and fine sediment - All types													Mary et	
Maintain stable hibernation habitat for reptiles and amphibians – AY types														

Operational Results

Summary of Flow Recommendations for all Habitat Types - Upper Ohio River Basin


		Summer	Fall	Winter	Spring					
	All habitat types	Maintain magnitude and frequency of 20-year (large) flood								
		Maintain magnitude and frequency of 5-year (small) flood								
SS.		Maintain magnitude and frequency of bankfull (1 to 2-year) high flow event								
High tlows	All habitat tγpes	< 10% change to magnitude of monthly Q10								
E			şh	Maintain frequency of						
				high flow pulses > Q10						
			during spring							
	All habitat types	Less than 20% change to seasonal flow range (monthly Q10 to Q50)								
	Headwaters and Creeks	No change to monthly median								
TIOWS		No change to seasonal flow ra								
	Small Rivers	Less than 10% change to monthly median								
Seasonal		Less than 10% change to seasonal flow range (monthly Q50-Q75)								
n	Medium Tributaries and Large	Less than 15% change to monthly median								
	Rivers	Less than 15% change to seasonal flow range (monthly Q50-Q75)								
	Headwaters and Creeks	No change to monthly Q75								
		No change to low flow range (monthly Q75 to Q99)								
Low flows	Small Rivers	Less than 10% change to low flow range (monthly Q75 to Q99)								
3	and	Summer and Fall		Winter and Spri	ing					
		No change to monthl γ	Q90	Less than 10% c	hange to monthly Q90					
	Medium Tributaries and Large									
	Rivers									

Demonstrating the ELOHA Framework

Goal = To demonstrate how flow-ecology relationships can be implemented at a watershed scale to guide management targets/decisions

- Develop decision support tools that can be used to affect criteria or management actions
- ❖ Summarize lessons learned and transferability to other areas of the State

Summarize data and information needs

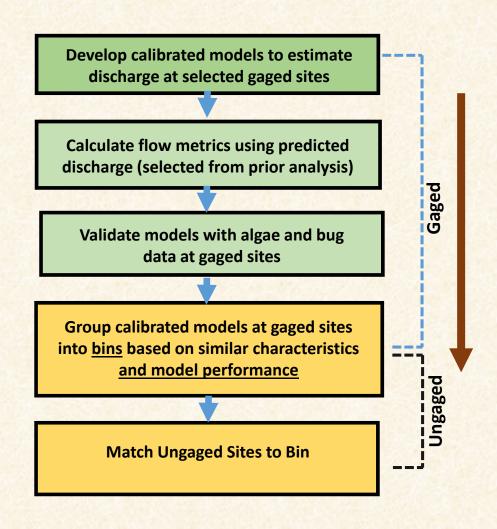
Demonstration Project Steps

- Apply hydrologic models
 - > Map of current deviations from expected hydrology
 - Develop hydrologic model to predict changes in the priority flow metrics under future land use conditions
- Apply flow-ecology models to predict changes in bioassessment indices under future scenarios
- 3. Identify priority management areas
- 4. Develop "desired conditions"
- Identify a range of management actions to achieve desired conditions
- 6. Create framework document for future implementation of ELOHA approach in other watersheds
 - > Summarize lessons learned and need for future work

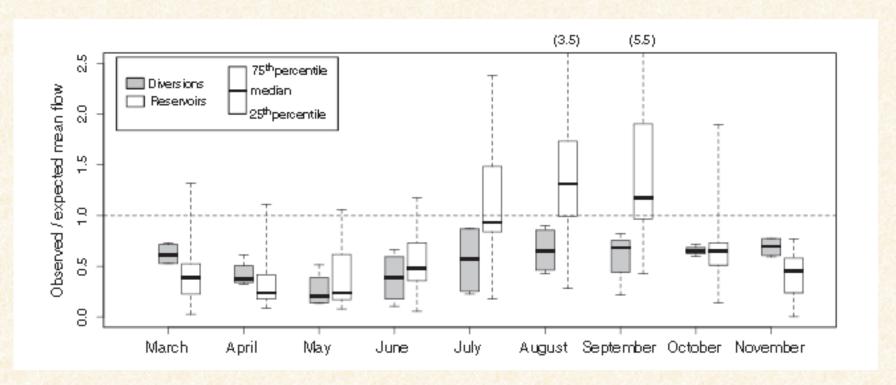
Anticipated Products

- GIS maps of watershed showing current hydrologic conditions
- Evaluation of current conditions relative to flow-ecology relationships
- Recommended hydrologic "profiles" that would support identified biological endpoints
 - \Box Estimates of risks of ΔB given small changes in ΔH
- Recommended actions for key regions/management units
- Recommendations for future monitoring that will help validate predicted flowecology relationships
- Lessons learned and recommendations for future implementation

Prototype application of flow "requirements" to affect management actions


Desired Interactions

- Input on how to define management subunits for the watershed
- Local data on flow, physical habitat, or biology, including prior hydrologic analysis (e.g. IHA)
- Input on determination of hydrologic targets
- Insight on local factors that could be influencing observed flow-ecology relationships
- Recommendations for management measures, opportunities, and constraints
- Insight into feasibility of specific management approaches
- ❖ Ideas about how to incorporate social/economic aspects
- Input on development of monitoring recommendations
- Ideas for spin-off or ancillary projects



EXTRA SLIDES

General Approach: Gaged Systems to Ungaged Systems

Differences in Flow Metrics Due to Anthropogenic Actions

Carlisle et al 2012

Potential Hydrologic Responses

Streams get flashier (increased imperviousness)
 □ HighDur ↓
 □ LowDur, LowNum, HighNum, QMaxIDR, PDC50, BFR, SFR ↑
 Streams get drier (increased withdrawals)
 □ Hydroperiod, Qmean ↓
 □ MinMonth, marzero ↑
 Streams get wetter (perennialization)
 □ Hydroperiod, Qmean ↑

☐ MinMonth, marzero ↓

Other responses possible (e.g., increased stability from controlled releases), but less prevalent in S. Ca.

Predicting Changes in Hydrology

- ❖OH: Observed hydrologic metric value
 - Both reference and non-reference gages
- ❖EH_C: Hydrologic metric value expected under current conditions (modeled for ungaged sites).
 - □ Can also be modified to reflect forecasted conditions.
- ❖EH_R: Hydrologic metric value expected under reference conditions (modeled)

Hypothesized Trait Response

Trait	Response to increased flashiness	Response to reduced flows			
Voltinism	↓ semivoltine	↓ semivoltine			
Development rate	↑ rate	↑ rate			
Synchronization of emergence	???	↑ synchrony			
Adult life span	???	???			
Female dispersal	↑ dispersal	↑ dispersal			
Adult fllying strength	↑ strength	↑ strength			
Adult exiting ability	???	???			
Occurrence in drift	↑ drifters				
Maximum crawling rate	???	???			
Swimming ability	???	???			
Attachment	↓ attachment	???			
Armoring	???	???			
Rheophily	↓ rheophily	↓ rheophily			
Dessication resistance	↑ resistance	↑ resistance			
Shape	???	???			
Size at maturity	↓ size	↓ size			
Habit	↓ clingers	↓ clingers			
Feeding habits	↓ predators	↑ predators			
Thermal	↓ cold	↓ cold			
Respiration	↓ gill/tegument	↓ gill/tegument			